
ARMY RESEARCH LABORATORY 

Analyses of High Energy Plasma 
Capillaries for Use in Electrothermal- 

Chemical Launch 

Gary L. Katulka 

ARL-TR-1069 MARCH 1996 

Approved for public release; distribution is unlimited. 

19960408 138 



The findings in this report are not to be construed as an official Department of the 
Army position unless so designated by other authorized documents. 

Citation of manufacturer's or trade names does not constitute an official 
endorsement or approval of the use thereof. 

Destroy this report when it is no longer needed. Do not return it to the originator. 



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

March 1996 
3. REPORT TYPE AND DATES COVERED 

Final 

4. TITLE AND SUBTITLE 

Analyses of High Energy Plasma Capillaries for Use in Electrothermal-Chemical Launch 

6. AUTHOR(S) 

Katulka, G.L. 

5. FUNDING NUMBERS 

PR: 1L1622618AH75 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
Weapons Technology Directorate 
Aberdeen Proving Ground, MD 21010-5066 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
Weapons Technology Directorate 
Aberdeen Proving Ground, MD 21010-5066 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

ARL-TR-1069 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

Theoretical calculations are performed with a one-dimensional, steady state, isothermal plasma code from the U.S. Army 
Research Laboratory for the purpose of defining plasma output parameters based on input electrical energies having relevance 
to the electrothermal-chemical (ETC) propulsion concept (Powell & Zielinski 1992). Input variables adjusted include 
capillary diameter, over a range of 1.92 mm to 7.00 mm, and input current amplitude over a range of 30 kA to 350 kA. The 
capillary length is fixed at 11.84 cm. Plasmas are classified according to their total power and energy level (based on a 3-ms 
power pulse width) and compared in terms of resistance, exit pressure, and core temperature. Plasma power levels range from 
0.17 to 1.89 GW, while the plasma energy level varies from 0.52 to 5.70 MJ, which is considered adequate coverage for ETC 
ignition through ETC propulsion enhancement concepts.   The study reveals that the range of resistance, pressure, and 
temperature is 12.8 to 195 mfl, 19.8 to 2000 MPa, and 2.9 to 13.5 eV, respectively, for the capillary matrix being 
investigated. Flow conditions for plasma calculations include choked (no pressure boundary) and unchoked (450 MPa 
pressure boundary condition). Results from theoretical plasma calculations and interpretations from the perspective of 
capillary implementation into ETC propulsion concepts are also included. 

14. SUBJECT TERMS 

capillary 
electrothermal-chemical 

ETC 
interior ballistics 

plasma 
propulsion 

15. NUMBER OF PAGES 

30 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 
298-102 



INTENTIONALLY LEFT BLANK 



ACKNOWLEDGMENTS 

Mr. William Oberle and Dr. John Powell of the U.S. Army Research Laboratory are 

acknowledged for their efforts in reviewing the work reported here. 

m 



INTENTIONALLY LEFT BLANK 

IV 



TABLE OF CONTENTS 

Page 

LIST OF FIGURES     vii 

LIST OF TABLES   ix 

1. INTRODUCTION    1 

2. PLASMA MODEL ASSUMPTIONS    1 

2.1 Plasma Capillary Assumptions  2 
2.2 Plasma Calculations   3 

3. DISCUSSION  7 

4. SUMMARY AND CONCLUSIONS  11 

REFERENCES  13 

DISTRIBUTION LIST  15 



INTENTIONALLY LEFT BLANK 

VI 



LIST OF FIGURES 

Figure Page 

1. Plasma Energy Versus Resistance for Capillaries 1 Through 3, Having Radii 
as Depicted: 7.0,4.75, and 1.92 mm, and Choked Flow Condition     4 

2. Plasma Energy Versus Exit Pressure for Capillaries 1 Through 3 Having Radii 
as Depicted, 7.0,4.75, and 1.92 mm, and Choked Flow Condition    5 

3. Plasma Energy Versus Core Temperature for Capillaries 1 Through 3 Having 
Radii as Depicted, 7.0,4.75, and 1.92 mm, and Choked Flow Condition  5 

4. Plasma Energy Versus Resistance for Capillaries 2 and 3 Having Radii as 
Depicted, 7.0,4.75, and 1.92 mm, and 450-MPa Pressure Boundary Condition ... 6 

5. Plasma Energy Versus Pressure for Capillaries 2 and 3 Having Radii as 
Depicted, 7.0,4.75, and 1.92 mm, and 450-MPa Pressure Boundary Condition ... 6 

6. Plasma Energy Versus Temperature for Capillaries 2 and 3 Having Radii as 
Depicted, 7.0,4.75, and 1.92 mm, with 450-MPa Pressure Boundary Condition . . 7 

Vll 



INTENTIONALLY LEFT BLANK 

Vlll 



LIST OF TABLES 

Table Page 

1. Plasma Calculation Results for Capillaries 1 Through 3 During the Choked 
Flow Condition at Low, Medium, and High Energy and Power Levels         8 

2. Plasma Calculation Results for Capillaries 2 and 3 During 450-MPa Pressure 
Boundary Condition at Low, Medium, and High Energy and Power Levels          8 

K 



INTENTIONALLY LEFT BLANK 



1. INTRODUCTION 

High energy electrical plasmas are of interest to the U.S. Army for application to the 

electrothermal-chemical (ETC) propulsion concept where their use can potentially increase the 

muzzle kinetic energy beyond that of a conventional gun, or it can provide a rapid and repeatable 

ignition source for conventional gun munitions. Much research has been reported over the years 

in the areas of ETC propulsion and the physics relating to plasmas that are characteristic of ETC 

guns.2"4 This report provides information from a recent study of ETC type plasma devices, in 

the form of theoretical calculations of plasma behavior during various operating conditions. The 

ETC plasma study includes the following: 

a. Analyses and interpretation of plasma properties including steady state resistance, exit 

pressure, and core temperature of the ETC plasma. Plasmas are assumed to be operating during 

freely expanding "choked flow" as well as "unchoked flow" conditions. The unchoked condition 

arises for some plasmas where a 450-megapascal (MPa) pressure boundary assumption is made; 

b. Plasma calculations are performed for three capillary geometries having various radii, and 

based on the results of the calculations, conclusions are drawn regarding the applicability of the 

different capillary dimensions for the various ETC propulsion concepts. 

2. PLASMA MODEL ASSUMPTIONS 

The plasma calculations undertaken here are performed with the steady state plasma model 

of John Powell from the U.S. Army Research Laboratory, the details of which have been 

reported previously in several technical publications (see References 1,4). The code is used here 

with the following assumptions. First, the liner material of the plasma capillary is considered to 

be polyethylene. Although other materials can be used for capillary liners (e.g., peek glass, 

polycarbonate, etc.), polyethylene is considered a standard material whose behavior as a plasma- 

generating device is similar (with respect to plasma power dissipation, conductivity, and 

temperature) to that of devices constructed from other materials.5 In addition, the conductivity 

model implemented by the model is that of Kurilenkov-Valuev. The use of this conductivity 

model results in a modification of the Spitzer conductivity model used in the plasma code, by 

adjusting the collision frequency between electrons and ions at lower plasma temperatures. 

Although the use of the model is less frequent in recent plasma modeling work,6 the model has 

demonstrated good agreement with recent experimental plasma data.7 Finally, the calculated 

plasma temperatures are for the core or bulk plasma. The bulk temperatures predicted here take 



into account a plasma surface temperature assumption which is known to cause somewhat higher 

bulk plasma temperatures and resistances with lower plasma exit pressures, compared to 

calculations being performed that assume a completely isothermal assumption. However, the 

plasma output parameters as a function of power and energy will generally behave the same. 

This can easily be verified by exercising the code during both conditions and comparing the 

output parameters. 

2.1 Plasma Capillary Assumptions 

For comparing plasma parameters such as resistance, pressure, and temperature, it was 

decided to examine plasma behavior at equivalent power and energy levels as opposed to 

electrical current level. This approach is desirable since two capillaries with different geometries, 

which are operating at identical input current, can produce plasmas that exhibit widely differing 

powers and total energies. Of course, because of the differences in capillary dimensions, the 

output parameters of interest (resistance, pressure, and temperature) will also exhibit great 

variation, regardless of an identical input current. As a result, it was decided to classify plasmas 

by power and energy level (based on an assumption of a 3-ms constant current input pulse) as 

opposed to the current level itself. An analysis can now be performed on plasmas (capillaries) 

having similar power and energy characteristics, which in general, are important criteria for 

determining the applicability to a given ETC concept. 

For a given ETC concept, however, a range of input electrical energies will be required for 

proper implementation, depending upon which ETC approach is selected. The source of this 

electrical energy is, of course, the high energy electrical plasma. For example, for an ETC igniter, 

it is believed that less than 1 megajoule (MJ) of electrical energy over a period of several 

milliseconds will be required to properly ignite a 120-mm conventional propellant charge. This is 

based on simplified assumptions of energy content and discharge characteristics of standard 

benite primers presently used to ignite large caliber (120-mm) gun systems. On the other hand, 

for electrical enhancement of propellant burn rates or temperature compensation of conventional 

propellants, both of which could possibly result in enhanced gun performance, it is believed that 

a minimum of about 1 MJ of electrical plasma energy will be required for proper ETC gun 

operation.3 

Three power levels, which are believed to be appropriate representatives of the 

requirements of the ETC concepts just described, were selected for this task. These include 

approximately 180 MW, 700 MW, and 1.8 gigawatts (GW). Given a time constant of 3 ms, 



which should be a good representation of the electrical application time required for each of the 

ETC concepts considered, three energy levels of approximately 500 kJ, 2 MJ, and 5 MJ result, 

all of which fall within the range of energies that might be required for the ETC concepts just 

discussed. 

For the remainder of the report, plasma properties are plotted with respect to total plasma 

energy, based on the approach just described. For each of the plots in Figures 1 through 6 of the 

following section, dividing the energy by the constant of 3 ms yields the plasma power amplitude 

for the calculation. 

In addition, for the calculations performed here, the capillary lengths were fixed at 

11.84 cm, which could realistically be used in a 120-mm tank cannon application. In addition, for 

simplicity, it was decided to investigate only three capillary radii. Again, the radii are selected for 

application to a 120-mm gun chamber and were chosen at 1.92 mm, 4.75 mm, and 7.0 mm. For 

the remainder of the report, the convention in referring to the capillaries is as follows: Capillary 

1, 7.0-mm radius x 11.84-cm length; Capillary 2,4.75-mm rad. x 11.84-cm length; and Capillary 

3,1.92-mm rad. x 1.84-cm length. 

In the following section, calculations with the model are performed to detemine the 

resistance, pressure, and temperature behavior of plasmas from three different capillaries, at each 

of the power and energy levels being considered. The first set of calculations has no boundary 

pressure, while the latter are performed with a 450-MPa boundary pressure.   The convention in 

referring to the nominal plasma energy level assumed in the calculations is as follows: low, 0.5 

MJ; medium, 2 MJ; and high energy level, 5 MJ. 

2.2 Plasma Calculations 

The steady state resistance, exit pressure, and plasma core temperature were selected as 

parameters of interest and included in the investigation. For each of the capillaries (1 through 3), 

an input current was chosen to give the approximate power and energy level required by the 

study. The choice of input current is the result of a somewhat arbitrary process in which the 

plasma code is exercised in an iterative manner, until the input current and plasma resistance 

values are such that the plasma power and energy levels are close enough to the preselected target 

values of power and energy. For this process, the steady state plasma power is determined from 

the product of the calculated plasma voltage drop (depending on the conductivity characteristics 

of the plasma) and the test current, at the given current level. The current is adjusted, either 



increased or decreased, until the target power and energy levels are reasonably matched. For this 

study, reasonable agreement was considered agreement within about 18% of target values, 

although much better agreement could easily be obtained through further iteration with the code. 

Since the plasma resistance plays a role in the transfer of electrical energy from a power 

supply to the plasma, the behavior of plasma resistance as a function of energy is investigated. 

For these calculations, unchoked flow is assumed by the model. The results are given in Figure 1, 

for each of the three capillaries at the given energy levels (low, medium, high), where the plasma 

resistance varies from about 13 milliohms (mQ) (Capillary 1 at high energy) to as much as 195 

mil (Capillary 3 at low energy). Figure 1 demonstrates rather strong relationships among plasma 

resistance, operating energy, and capillary radius. 
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Figure 1. Plasma Energy Versus Resistance for Capillaries 1 Through 3. Having Radii as 
Depicted: 7.0. 4.75. and 1.92 mm. and Choked Flow Condition. 

It is noticed how a very large dynamic range results for Capillary 3 (smallest diameter) 

resistance, over the given energy range, while the converse is true as the capillary radius is 

systematically increased. 

Figures 2 and 3 are plots of plasma energy versus plasma exit pressure and plasma 

temperature, respectively. The exit pressure is the pressure at the open end of the capillary 

where plasma gases initially appear as the plasma flows from the capillary, while the plasma 

temperature is that experienced in the core of the plasma. Once again, it is noted how Capillary 3 



has a wide (dynamic) range of exit pressures and core temperatures compared to Capillaries 1 

and 2. 
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Figure 2. Plasma Energy Versus Exit Pressure for Capillaries 1 Through 3 Having Radii as 
Depicted. 7.0. 4.75. and 1.92 mm. and Choked Flow Condition. 

>- 
(3 
cr 
in z 
LLI 

< 

CO 
< 

6T 

5 

4-- 

3- 

2- 

1- 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
y 

y 

/ 
s 

-o— Capillary 1 

s Capillary 2 

n       Capillary 3 

4 6 8 10 12 

PLASMA CORE TEMPERATURE (eV) 

14 

Figure 3. Plasma Energy Versus Core Temperature for Capillaries 1 Through 3 Having Radii as 
Depicted. 7.0. 4.75. and 1.92 mm. and Choked Flow Condition. 



Figures 4 through 6 are the results of plasma calculations with the additional assumption of 

a pressure boundary condition at the plasma exiting plane. For this set of calculations, the 

boundary pressure is set at 450 MPa. The calculations are now performed only for Capillaries 2 

and 3 with all previous calculation assumptions remaining unchanged. The results with the 

pressure boundary condition are plotted in Figures 4 through 6 (broken lines) together with the 

results from the previous calculations, which did not have the externally applied 450-MPa 

pressure boundary (solid lines). Figure 4 contains the plasma resistance relationships; Figure 5 

contains the exit pressure relationships; and Figure 6 shows the core temperature relationships. 
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Figure 4. Plasma Energy Versus Resistance for Capillaries 2 and 3 Having Radii as Depicted. 7.0, 
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Figure 5. Plasma Energy Versus Pressure for Capillaries 2 and 3 Having Radii as Depicted. 7.0. 
4.75. and 1.92 mm. and 450-MPa Pressure Boundary Condition. 
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7.0. 4.75. and 1.92 mm. with 450-MPa Pressure Boundary Condition. 

3.  DISCUSSION 

The data for the calculations performed here are arranged in Tables 1 and 2. Table 1 gives 

the input parameters for the choked flow calculations along with the outputs for each capillary at 

the given energy and power levels. Table 2 shows the results for the calculation having the 450- 

MPa boundary condition for Capillaries 2 and 3 at each of the three energies and powers. Note 

that the numbers in Table 2 under the heading of percent difference represent the difference 

between choked and pressure boundary values, as a percentage. Percent difference as calculated 

here represents the absolute value of the choked value minus the pressure boundary value divided 

by the choked value. 

For Capillary 2, the exit pressure is obviously dominated by the boundary pressure of 450 

MPa, with increases of 406 (918%), 304 (208%), and 125 (39%) MPa for the low, medium, and 

high energies, respectively. The resulting temperatures are 5.2, 6.2, and 7.7 electron volts (eV), 

respectively, for the low, medium, and high energy levels. This represents an increase in 

temperature of 1.63 (44%), 0.7 (13%), and 0.13 (1.3%) eV, compared to the previous 

calculations without the 450-MPa boundary condition. The resistance of the Capillary 2 plasma 

is also sensitive to the pressure boundary, with decreases in resistance ranging from 20.4 mQ 

(39%) to 0.3 mQ (1.5%) over the range of energies investigated. 



Table 1. Plasma Calculation Results for Capillaries 1 Through 3 During the Choked Flow 
Condition at Low. Medium, and High Energy and Power Levels 

Capillary 
Dimensions 
(number) 

Input 
Current 

(kA) 

Plasma 
Resistance 

(mQ) 

Input 
Power 
(GW) 

Input 
Energy 
(MJ) 

Plasma 
Exit 

Pressure 
(MPa) 

Plasma 
Core 

Temp 
(eV) 

7.0 mm (1) 75 30.5 0.17 0.52 19.8 2.9 

187 18.6 0.65 1.96 64.0 4.6 

350 12.8 1.57 4.70 145.0 6.1 

4.75 mm(2) 60 51.7 0.19 0.56 44.2 3.6 

150 31.2 0.70 2.10 146.0 5.5 

287 20.2 1.67 4.98 325.0 7.6 

1.92 mm(3) 30 195.0 0.18 0.53 235.0 5.2 

75 110.0 0.62 1.86 744.0 8.1 

187 54.9 1.89 5.70 2000.0 13.5 

Table 2. Plasma Calculation Results for Capillaries 2 and 3 During 450-MPa Pressure Boundary 
Condition at Low. Medium, and High Energy and Power Levels 

Capillary 
Dimensions 
(number) 

Input 
Current 

(kA) 

Plasma 
Resistance 

(mß) 
Percent A 

Input 
Power 
(GW) 

Input 
Energy 
(MJ) 

Plasma 
Exit 

Pressure 
(MPa) 

Percent A 

Plasma 
Core 

Temp 
(eV) 

Percent A 

4.75 mm(2) 75 31.3 39.5 0.18 0.53 450 918 5.2 44.4 

150 26.3 16 0.59 1.78 450 208 6.2 13 

287 19.9 1.5 1.64 4.92 450 39 7.7 1.3 

1.92 mm(3) 30 184 5.6 0.17 0.49 450 92 5.4 3.8 

75 110 0 0.62 1.85 744 0 8.1 0 

187 54.9 0 1.92 5.80 2000 0 13.5 0 

General observations for Capillaries 1 and 2 (larger diameters) include 

a. Plasma output parameters of resistance, pressure, and temperature are less sensitive to 

the input energy level assumed in the calculations, compared to Capillary 3 (smallest diameter). 



b. Pressure boundary conditions have a strong influence over all plasma parameters 

considered in the study, at nearly every energy level. Resistance tends to drop, exit pressure 

increases, and core temperature increases for the plasmas of these capillaries, as the pressure 

boundary is applied to the calculation. 

c. Lower exit pressures are experienced in nearly all calculations with these capillary 

dimensions (19.8 to 325 MPa). As a result, the ability for Capillaries 1 and 2 to inject plasma 

material into a pressurized gun chamber remains in question at the relatively low plasma 

pressures calculated. Larger capillaries might therefore be best used purely as an ignition source 

when plasma injection late in the ballistic cycle is not a requirement and when plasma output 

parameters with respect to input energy level are more stable. 

The relationships for Capillary 3 are nearly unchanged by the added 450-MPa pressure 

boundary condition, regardless of energy level. In fact, for Capillary 3, the plasma resistance is 

identical for medium and high energies, while it is only decreased by 11 mQ (5.6% difference) for 

the low energy case. The pressure and temperature of the plasma from Capillary 3 is increased 

by 215 MPa (91%) and 0.22 eV (3.8%), respectively, at low energy, and it remains completely 

unchanged in exit pressure and core temperature for medium and high energies. The output 

parameters of Capillary 3 are obviously dominated by the self-generated capillary pressure at all 

energies considered, especially medium and high, regardless of the 450-MPa pressure boundary 

condition. Based on these results, it seems reasonable that such a capillary would be appropriate 

for ETC propulsion concepts requiring continued plasma flow from the capillary into the gun 

chamber, during the ballistic cycle. 

The summary of observations for Capillary 3 (small diameter) calculations includes the 

following: 

a. Exit pressures and core temperatures increase more rapidly, compared to the other 

capillaries examined, as input energy is increased. The plasma resistance decreases more rapidly 

as input energy is increased. 

b. The small diameter capillary is much less sensitive to pressure boundary conditions at 

the exit plane of the capillary, with respect to resistance, exit pressure, and core temperature, in 

comparison with other capillaries in the study. In fact, in some calculations, the output is 

completely unchanged by the pressure boundary, which indicates that the self-pressure of the 

plasma is dominant. 



c. Exit pressures and core temperatures achieved extreme levels (2000 MPa, 13.5 eV) as the 

energy approached 5 MJ. 

In summarizing this set of calculations, capillaries having diameters similar to those of 

Capillary 3 appear to be best for injection of plasma material into a pressurized gun chamber, 

perhaps late in the ballistic cycle. Of course, this may come at the expense of a very high core 

temperature and a somewhat higher plasma resistance and pressure. The use of smaller 

(diameter) capillaries for ETC performance augmentation will then require the ability to employ 

higher temperature plasmas as well as employ pulsed power supplies of higher impedances, 

although the latter of these should not be difficult. In addition, the ability to use plasmas with 

widely fluctuating output parameters must be considered, if a variety of energy levels is needed 

for proper ETC operation. This is because of the large dynamic range observed for each of the 

plasma output parameters (resistance, pressure, temperature) as a function of input energy. 

The large dynamic range observed in Capillary 3 may have practical limitations if relied 

upon in an ETC application. For example, it has been shown in previous investigations that the 

electrical transfer efficiency of a fixed impedance pulsed power supply will exhibit a poor 

(approximately 40%) electrical transfer efficiency for capillaries having a resistance unmatched to 

that of the power supply.7 As a result, one might expect that a fixed impedance power supply 

will have a large variation in transfer efficiency with small diameter capillaries, over a given range 

of input power and energy levels. Large capillary plasmas could therefore be described as more 

stable in terms of their impedance behavior and transfer efficiencies with respect to power and 

energy input levels. One technical method of overcoming variations in transfer efficiency is to 

allow the impedance of the power supply to fluctuate with the plasma resistance. This, of 

course, could translate into a more complex power supply in terms of the additional switching 

and control components that are necessary to achieve the more dynamic power supply. 

Additional computations and experiments for the purpose of further defining the behavior 

of plasmas at energy levels and of dimensions appropriate for ETC applications should be 

pursued aggressively before final conclusions are drawn with regard to optimal ETC plasma 

capillaries. The calculations in this report are performed with potentially severely limiting 

assumptions (e.g., one-dimensionality, isothermal effects, exclusion of hydrodynamics effects). 

As a result, it is highly advisable to continue theoretical and experimental exercises in the areas of 

ETC plasma investigations, with increasing levels of complexity before making any serious or 

profound conclusions with regard to ETC plasma capillary selection. 

10 



4. SUMMARY AND CONCLUSIONS 

Theoretical calculations have been performed with a one-dimensional, steady state, 

isothermal plasma model with the objective of defining high energy plasma output parameters of 

interest to the electrothermal propulsion concept. Capillary radii were varied over a range of 1.92 

to 7.00 mm, while the input current level was modulated between 30 kA and 350 kA for 

capillaries having a fixed length of 11.84 cm. The range of plasma powers and energies 

investigated include 0.17 to 1.89 GW and 0.52 to 5.70 MJ, respectively. The plasma output 

parameters of resistance, exit pressure, and core temperature fluctuated greatly over the range of 

energy and capillary diameters used. The range of resistance, pressure, and temperature is 12.8 

to 195 mQ, 19.8 to 2000 MPa, and 2.9 to 13.5 eV, respectively. The effect of a 450-MPa 

external pressure boundary condition was noticed to have a more significant impact on the 

plasma output parameters for large diameter capillaries and little or no impact on small diameter 

capillaries. 

Large diameter capillaries studied here (Capillaries 1 and 2) showed a reduced sensitivity 

to the plasma energy level with respect to output parameters (resistance, pressure, temperature). 

An externally applied pressure boundary condition (450 MPa) had a strong influence on plasma 

output parameters, and the self-generated plasma pressures experience were generally much less 

than those of the small capillary (Capillary 3). Based on these observations, it appeared that a 

larger capillary might best be used in the application of an ETC igniter. 

The small diameter capillary (3) was observed to have output parameters that were much 

more sensitive to the plasma energy level used; it was much less sensitive to the externally 

applied (450-MPa) pressure boundary condition, and it produced very large exit pressures and 

core temperatures. As a result, it might appear that a smaller diameter capillary would be best 

for applications when injection of electrical plasma energy into a gun chamber for a longer period 

in the ballistic cycle, such as ETC performance augmentation, is a requirement. 

11 
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